
THE NEONATAL CARDIOVASCULAR SYSTEM AND CONGENITAL HEART DISEASE

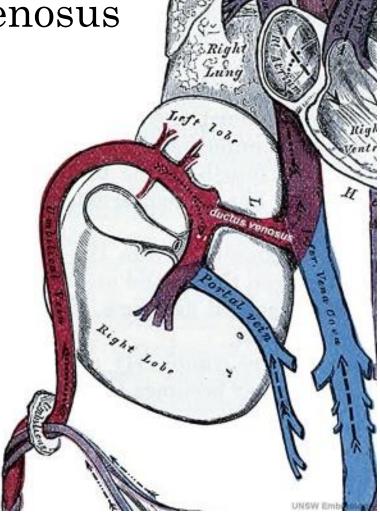
Jessica Martell, MS, CRNA, APRN

• Differs from adults in many ways

- Gas exchange occurs at placenta not lungs
- Blood with highest O_2 content is directed to heart and brain
- Circulation relies on 3 shunts
- Circulation is in parallel not series
- Right-to-left shunting across FO and DA
- PVR is high not low
- SVR is low not high

FETAL BLOOD GASES

Umbilical Vein

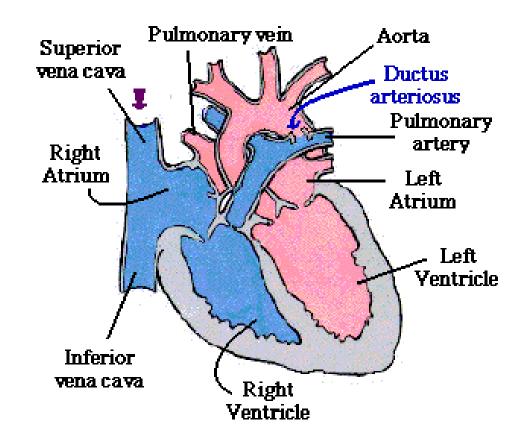

- A single umbilical vein connects the placenta to the fetus to deliver oxygen
- Umbilical vein blood gas: pH= 7.35 PaO2= 30 PaCO2= 40

Umbilical arteries

- Two umbilical arteries connect the fetus back to the placenta to return carbon dioxide and deoxygenated blood
- Umbilical arteries blood gas: pH= 7.30 PaO2= 20 PaCO2= 50

- The 3 shunts explained
 - Ductus venosus
 - Connects the left portal vein to the left hepatic vein at junction with IVC
 - 50% of oxygenated blood from placenta is able to bypass the hepatic sinuses
 - Foramen ovale
 - ${\scriptstyle o}$ Found between right and left a trium directs ${\rm O}_2$ rich blood to LA
 - Ductus arteriosus
 - ${\scriptstyle o}$ Connects PA to descending a orta, lower O_2 blood is directed to PA, by passes lungs, then to lower body

FETAL CIRCULATION Ductus Venosus



• Foramen ovale

- O₂ rich to LA, brain & heart (red pathway)
- Low O₂ blood to RV, PA and bypasses lungs (blue pathway)

• Ductus arteriosus

- The umbilical vein carries oxygen rich blood (pao2 = 30 mmhg) into the portal venous system
- 2. The ductus venosus allows 50% of oxygenated blood to bypass the liver, directing it to the IVC in favor of perfusing the brain and heart
- 3. Oxygentated and deoxygenated blood in IVC move at different velocities
- 4. Higher velocity oxygentated blood from ductus venosus moves to IVC → RA → FO → LA → Aorta → Brain/Heart

- 5. The Eustachian valve is a flap of tissue that diverts the oxygenated blood across the PFO into the LA
- 6. Lower velocity deoxygentated blood from lower body moves into SVC/IVC → RA→ RV → PA → bypasses lungs → DA → descending aorta
- This deoxygenated blood perfuses the lower body and returns to placenta via 2 umbilical arteries (pao2= 16mmhg)

TRANSITION AFTER BIRTH

- The first breath leads to \clubsuit PaO₂, \clubsuit PaCO₂, \clubsuit PVR
- Umbilical cord clamping ♥ area for blood to circulate and ↑SVR
- Right to left shunt shifts to left to right (SVR>PVR)
- This reversed blood flow closes the flap valve (FO)
- The lungs open up (↓ PVR) and reverses flow across ductus arteriosus (DA) from aorta to PA
- Oxygenated blood flows over DA and leads to closure
- Cord clamping decreases prostaglandin (PGE1) and also closes DA

SHUNT CLOSURES

• Functional versus Permanent Anatomic Closure

• Fetal shunts may not close in the presence of

- Acidosis
- Sepsis
- Hypothermia
- hypoxia
- hypercarbia

SHUNT CLOSURES

• Ductus Venosus

- Functional closure via loss of umbilical venous blood flow over the first week of life
- Physically closed by three months of age
 The remnant is the ligamentum venosum

• Foramen Ovale

- Functional closure at cord clamping
 - Decreased right atrial pressure related to loss of venous return from umbilical vein
 - Increased left atrial pressure related to increased pulmonary blood flow
- Physical closure quickly follows functional
 - Usually by 3 days
 - A PFO may be present in 30% of adults and 50% of children less than 5 years

SHUNT CLOSURES

• Ductus Arteriosus

- Functional closure at first day of life via increased PO2, decreased prostaglandin, and increased SVR/decreased PVR
 - Functional closure may be reversed with PGE1 infusion if defect is ductal dependent
- Physical closure at 2-3 weeks old via fibrosis
- Pre-term neonates are at risk for prolonged ductal closure
 - They have increased PGE1 and a reduced response to oxygen-driven smooth muscle constriction
 - Indomethacin, a prostaglandin inhibitor, may promote closure
 - Device closure or ligation may be required

NEONATAL CARDIOVASCULAR SYSTEM

• Neonatal Cardiovascular System

- Reduced Ventricular compliance
 Due to a lack of elastic elements
- Reduced contractility
 - Reduced contractile elements, mitochondria, and sarcoplasmic reticulum
 - Poorly developed T-tubules
 - Increased reliance on extracellular calcium
- Increased intraventricular dependence
 - Due to a lack of ventricular compliance
 - Ventricular filling is easily affected by opposite ventricle end-diastolic filling pressure
 - RV and LV size and thickness are equal at birth
 - The increased afterload on the LV will aid to double its mass relative to the RV after several months of life

NEONATAL CARDIOVASCULAR SYSTEM

• Neonatal Cardiovascular system

- Afterload mismatch
 - Stroke volume quickly declines with increased afterload
- Poor preload reserve
- Parasympathetic NS dominates, incomplete sympathetic innervation

• Reduced response to chronotropic/inotropic support

- Poor baroreceptor response to hypotension
- Increased dependence on anaerobic metabolism
 - Myocytes have ↑ glycogen storage/ anaerobic glycolysis allowing for buffer for ischemic insult
 - Bradycardia often a LATE sign of hypoxia
- Overall cardiac output **is heart rate** dependent

PEDIATRIC CV SYSTEM

Normal range of resting heart rate and blood pressure in children

Age	Heart Rate (bpm)	Blood Pressure (mm Hg)
0-3 mos	100-150	65-85/45-55
3-6 mos	90-120	70-90/50-65
6-12 mos	80-120	80-100/55-65
1-3 yrs	79-110	90-105/55-70
3-6 yrs	65-110	95-110/60-75
6-12 yrs	60-96	100-120/60-75
>12 yrs	55-85	110-135/65-85

CONGENITAL HEART DISEASE

o Incidence

- 7-10 per 1,000 live births
- 9 lesions account for 80% of all CHD
 - VSD, ASD, PDA, PS, AS, Coarc of aorta, AVSD, TOF, TGA
- Infant signs and symptoms of CHD
 - Tachypnea, poor feeding, ♥ weight gain, HR > 200 bpm
 - Hear murmur, CHF, cyanosis

CHD OVERVIEW

• Acyanotic congenital heart lesions

- Atrial Septal Defect (ASD)
- Ventricular Septal Defect (VSD)
- Patent Ductus Arteriosus (PDA)
- AV Canal
- Aortic Stenosis (AS)
- Pulmonary Stenosis (PS)
- Coarctation of the Aorta

CHD OVERVIEW

• Cyanotic congenital heart lesions

- Tetralogy of Fallot (TOF)
- Transposition of the great arteries (TGA)
- Tricuspid valve abnormality (Ebstein's anomaly)
- Truncus arteriosus
- Total anomalous pulmonary venous connection
- Single ventricle physiology
- Eisenmenger syndrome

CHD DIAGNOSIS

- Chest x-ray
- Barium esophogram
 - limited use
- Echocardiogram
 - gold standard for initial evaluation and serial assessment
- Cardiac MRI
 - beneficial for assessment of complex disease and to guide surgical intervention
- Cardiac CT
 - Helpful for evaluation of aortic arch anomalies, coronary abnormalities, airway pathologies, and defining systemic and pulmonary venous returns

• Cardiac cath

• Pressure and resistance data, shunt ratios, anatomic definition, EP treatment, and catheter based interventions

CHD IMPORTANT CONCEPTS

• Vascular Resistance

- What increases PVR?
- What decreases PVR?
- What increases SVR?
- What decreases SVR?

• Physiological Shunting

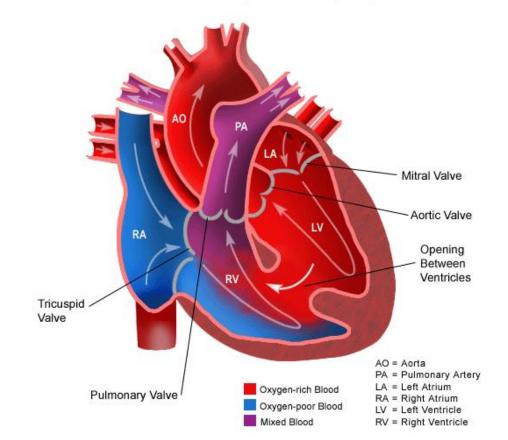
- It is the recirculation of blood
- A L-R shunt is the recirculation of pulmonary venous blood
- A R-L shunt is the recirculation of systemic venous blood
- Physiological shunts are commonly due to anatomic shunts

CHD IMPORTANT CONCEPTS

- Quantifying Shunt Volumes
- Pulmonary-to-Systemic Blood Flow Ratio
 - Qp/Qs ratio 1:1 is normal and *typically* suggests no shunting is present
 - Qp/Qs ratio > 1:1 defines a left to right shunt in which pulmonary blood flow is greater than systemic blood flow
 - Qp/Qs ratio < 1:1defines a right to left shunt in which pulmonary blood flow is less than systemic blood flow
 - Bidirectional shunting can occur in a single patient, and if the degree of left to right shunting is similar to the degree of right to left shunting, Qp:Qs ratio may equal 1:1

CHD IMPORTANT CONCEPTS

- Effects of Intracardiac Shunts on Anesthetic Induction
- Right to Left Shunts
 - Rapid IV induction
 - Slower inhalation induction
- Left to Right Shunts
 - Little difference on IV induction
 - Little difference on inhalation induction


ACYANOTIC CONGENITAL HEART LESIONS

Acyanotic heart disease (pink baby)VSD, ASD, PDA, AV Canal

 Increased pulmonary circulation → pulmonary hypertension → RV hypertrophy → CHF

• Ventricular Septal Defect

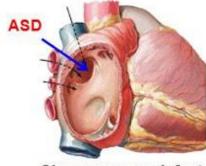
Ventricular Septal Defect (VSD)

• Ventricular Septal Defect

- The most common CHD lesion accounting for greater than 20% of CHD cases
- Many close spontaneously by the age of 2
- Associated with Trisomy 13,18, and 21
- Classified by location the septum
 Most common is perimembranous VSD

•Ventricular Septal Defect

• Signs and Symptoms


- If VSD is small, pulmonary blood flow is only slightly increased
- If VSD is large, direction/magnitude of shunt is determined by PVR and SVR
- Large VSDs also predispose patients to pulmonary artery hypertension
- Symptoms of Congestive Heart Failure
- Can convert to R-L shunt (Eisenmenger Syndrome) from pulmonary vascular disease

- Ventricular Septal Defect
- Treatment
 - Observation
 - Medical management
 - Closure via open heart surgery or transcatheter device closure
- Anesthetic management
 - Inhalation induction is reasonable if no CHF
 - Avoid drugs that increase SVR
 - Volatiles and positive pressure ventilation ↓ SVR and ↑ PVR thus decrease the left to right shunting
 - Reduce FIO2 and avoid hyperventilation to maintain PVR
 - Avoid air in the IV tubing
 - Post bypass, reduce PVR and provide inotropic support to RV if needed
 - If stable, can often attempt early extubation

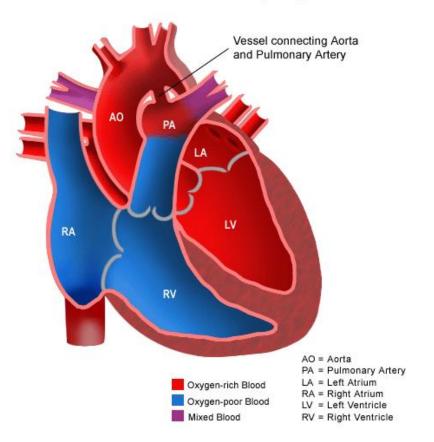
• Atrial Septal Defect

Ostium secundum defect

Sinus venosus defect

Ostium primum defect

• Atrial Septal Defect


- The second most common CHD lesion
- Pressure gradient is typically low
- When > 1-2 cm, L-R shunting occurs because of ventricular compliances, PVR, and SVR
- Net effect is increased pulmonary circulation
- A heart murmur can be detected at age 6-8 weeks

- Atrial Septal Defect
- Signs and Symptoms
 - RV volume overload and increased pulmonary blood flow
 - Poor exercise tolerance/poor feeding
 - Poor weight gain
 - Paradoxical embolism
 - Recurrent pulmonary infections
 - Atrial flutter/fibrillation (late)
 - Congestive heart failure (late)

- Atrial Septal Defect
- Treatment
 - Observation
 - Medical Management
 - Closure via open heart surgery or transcatheter device closure
- Anesthesia management
 - Avoid drugs that increase SVR
 - Volatiles and positive pressure ventilation ↓ SVR and
 ↑ PVR thus decrease the left to right shunting
 - Reduce FIO2 and avoid hyperventilation to maintain PVR
 - Avoid air in the IV tubing
 - Post bypass, reduce PVR and provide inotropic support to RV if needed
 - If stable, can often attempt early extubation

• Patent Ductus Arteriosus

Patent Ductus Arteriosus (PDA)

• Patent Ductus Arteriosus

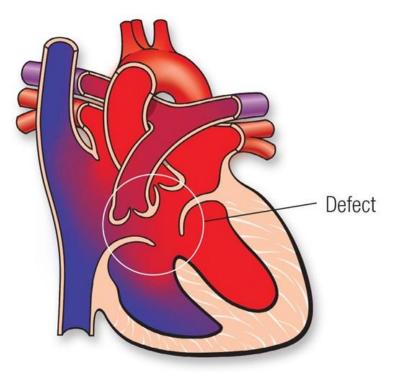
- Accounts for 10% of CHDs
- Normal closure at birth (physical closure via fibrosis over first several weeks of life)
- Stays open in 20-30% of premature infants
- Results in continuous flow of blood from aorta to PA
- Shunting dependent on PVR and SVR

• Patent Ductus Arteriosus

• Signs and Symptoms

- Premature infants with respiratory distress
- May be older child with isolated PDA
- Continuous systolic and diastolic murmur
- If L to R shunt is large → left ventricular hypertrophy on ECG and chest x-ray
- Diastolic run-off from proximal aorta to PA
 Can decrease end-organ perfusion
- If left untreated can lead to CHF, pulmonary HTN, Eisenmenger's syndrome, poor growth, infective endocarditis, aneurysm of ductus, and ductal calcification

- Patent Ductus Arteriosus
- Treatment
 - Observation
 - Closed via medical closure, transcatheter device closure, or PDA ligation


• Medical closure involves cox-1 or cox-2 inhibitors

- Indomethacin has reduced the need for surgery by 60% and is first line therapy
- Adverse effects include decreased mesenteric, renal, and cerebral blood flow
- Surgical closure involves thoracotomy off cardiac bypass

- Patent Ductus Arteriosus
- Anesthetic Management
 - Maintain heart rate, contractility, and preload
 - Avoid air bubbles in IV tubing
 - Volatile anesthetics and positive pressure ventilation are desirable due to ♥ left to right shunt
 - Be prepared for high FIO2 requirements with left lung retraction with thoracotomy approach
 - After PDA ligation you see ↑ SVR and can see hypertension
 - Compare upper and lower extremity blood pressures to ensure coarctation was not created

• Atrioventricular Septal Defect (AVSD)

Atrioventricular Canal Defect

• Atrioventricular Septal Defect (AVSD)

- Accounts for 5% of all CHD cases
- Most common in infants with down syndrome
- Described by the lack of production of the endocardial cushion
- The endcordial cushion includes:
 - 1. The lower portion of the atrial septum
 - 2. The ventricular septum
 - 3. The separation of the mitral and tricuspid valves

- Complete AVSD
 - Defect in the atrial septum, ventricular septum, and common AV valve
- Partial AVSD
 - Atrial septal defect
 - Mitral valve cleft
 - Ventricular septum has filled in and AV valves are separated
- Transitional AVSD
 - Similar to complete AVSD structurally, but functionally has two separate AV valves

- Atrioventricular Septal Defect (AVSD)
- Signs and Symptoms
 - Left to right shunt that increases pulmonary artery pressure and can lead to pulmonary edema
 - Increased blood volume in the left ventricle posing risk for CHF
 - Tachypnea, sweating, poor feeding, poor weight gain
 - Heart murmur
 - Symptoms usually develop gradually over first few months of life

- Atrioventricular Septal Defect (AVSD)
- Treatment
 - Medical management
 - Often require diuretics/ace inhibitors for CHF symptoms
 - Complete AVSD surgical repair occurs at 3-6 months
 - Incomplete AVSD surgical repair occurs at 6-18 months
 - Repair includes closure of the atrial/ventricular septums with patches and separation of the common AV valve

• Anesthetic Management

- Prior to repair, maintain PVR
- Post-repair treat pulmonary hypertension with tactics that reduce PVR
 - Nitrix oxide, 100% FIO2, hyperventilation, deep anesthetic
- Be prepared for conduction disturbances
 - Rhythm and rate control agents
 - Epicardial pacer wires

• Coarctation of the Aorta

High blood pressure before point of coarctation

Low blood pressure beyond point of coarctation

*ADAM

Coarctation

of the aorta

- Coarctation of the Aorta
 - Represents 5-10% of CHD cases
 - Associated with Turner syndrome
 - Causes LV pressure overload and reduced perfusion to lower body
 - Most common at the juxtaductal portion of aorta
 - Portion where ductus arteriosus connected

• Presentation

- Preductal → proximal to left subclavian artery, less common, presents in infants
- Postductal → distal to left subclavian artery at site of ligamentum arteriosum, presents in young adults
 - Blood pressure should be attempted to be taken on the upper extremities, preferably the right arm

- Coarctation of the Aorta
- Signs and Symptoms
 - Harsh systolic ejection murmur
 - Loudest in the back where aorta is located
 - Systolic BP is higher in the arms than the legs but diastolic BP is similar
 - Weak and delayed femoral pulses
 - Systemic hypertension due to injecting LV stroke volume into fixed resistance of narrowed aorta
 - Headache, dizziness, epistaxis, and palpitations

• Coarctation of the Aorta

• Severe obstruction in the infant

- Blood flow to lower body depends on PDA
- Closure of the PDA can cause acute decompensation
- Patency maintained with Prostaglandin E_1
- Surgical correction is performed soon after stabilization

• Mild to moderate obstruction in older child

- Body forms many collaterals through internal thoracic, intercostal, scapular, and subclavian arteries
- Posterior rib notching visible on chest x-ray

- Coarctation of the Aorta
- o Treatment
 - Surgical correction involves left thoracotomy incision off bypass
 - Resection with end-to-end anastomosis (most common)
 - Arch Advancement
 - Aorta distal to constriction is anastomosed to ascending aorta
 - Synthetic patch aortoplasty
 - Left subclavian flap aortoplasty
 - Balloon angioplasty +/- stent placement

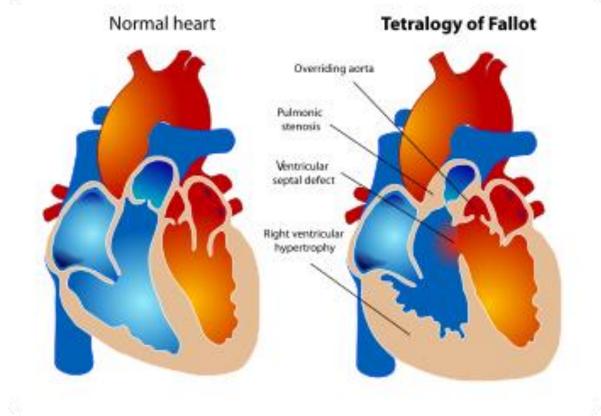
• Coarctation of the Aorta

• Anesthetic Management

- Must have RUE arterial line for monitoring during aortic clamp
- Monitor blood gases as left thoracotomy poses risk for lung retraction
- Permissive hypothermia for spinal cord protection related to cross-clamp
- Prepare for hypertension during aortic clamp
- Prepare for hypotension prior to the removal of aortic clamp

• Decrease sevoflurane and fluid resuscitation

- Rebound hypertension post-repair up to 1 week
 - Esmolol or nitroprusside


CYANOTIC CONGENITAL HEART LESIONS

• The 5 T's

- Tetralogy of Fallot
- Tricuspid Atresia
- Transposition of the Great Arteries
- Total Anomalous Pulmonary Venous Connection
- Truncus Arteriousus
- Characteristics
 - Decreased pulmonary blood flow
 - Arterial hypoxemia (blue baby)

• Tetralogy of Fallot

• Most common cyanotic CHD (7-10% of all CHD)

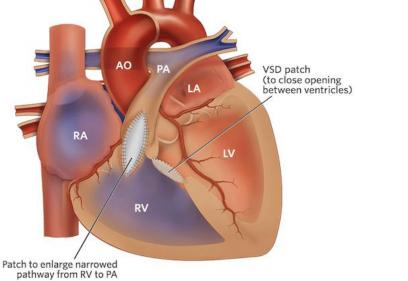
1. Narrowing of the pulmonary valve

 Thickening of wall – of right ventricle Tetralogy of Fallot

Four abnormalities that results in insufficiently oxygenated blood pumped to the body

> Displacment of aorta over ventricular septal defect

> > Ventricular septal defect- opening between the left and right ventricles

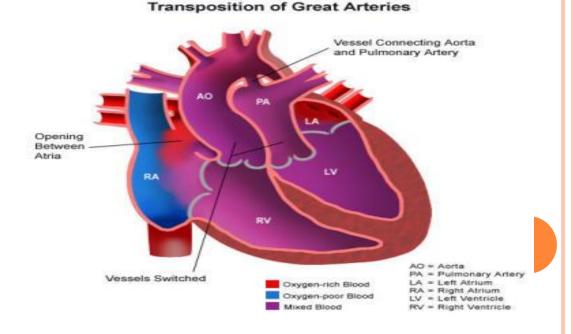

- Tetralogy of Fallot
- How does increased PVR influence intracardiac shunting?
- How does decreased SVR influence intracardiac shunting?
- Squatting or phenylephrine increase SVR, what does this do?

- Tetralogy of Fallot
- Signs and symptoms
 - Cyanosis develops between ages 2 and 6 months
 - Systolic ejection murmur at left sternal border
 - Boot shaped heart on chest radiograph
 - PaO₂ is usually <50 mm Hg
 - Squatting is common in children with TOF
 - "Tet spells" hypercyanotic attacks triggered by crying, defecation, feeding, or exercise

RIGHT TO LEFT SHUNTS • Tetralogy of Fallot

• Treatment

- Patch closure of VSD which allows blood to flow only from LV to aorta
- RVOT is augmented by cutting away obstructive RV muscle and enlarging the path with a patch



- Tetralogy of Fallot
- Anesthetic Management
 - Right to Left shunt increased by
 - ↓ SVR (volatiles, histamine, α-blockers)
 - •↑ PVR (positive airway pressure, PEEP)
 - $\circ \uparrow$ myocardial contractility
 - Loss of (-) intrapleural pressure
 - Slow careful sevoflurane inductions
 - Initiate volume expansion immediately
 - Phenylephrine available to treat decreases in SVR
 - Inotropes to support the RV
 - Pacing for possibility of JET

- Tetralogy of Fallot
- Tet Spells
 - Most common during induction, just prior to surgical stimulation (lack of SNS tone), and during surgical manipulation
- Tet Spell Treatment
 - 100% FIO2
 - Fluid boluses
 - Phenylephrine 5-10mcg/kg
 - Abdominal compression or trendelenburg position
 - Esmolol 50 mcg/kg to reduce infundibular spasm
 - Aortic compression by surgeon

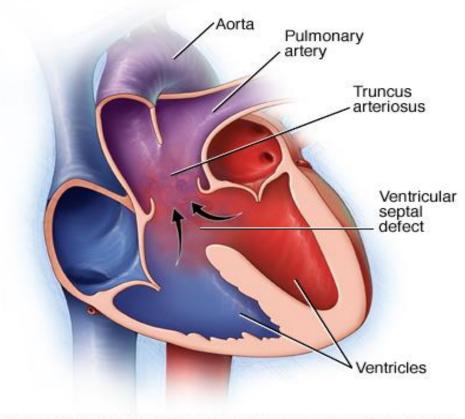
• Transposition of the Great Arteries

- Accounts for 4%-8% of all CHD
- Also classified as an admixture lesion
- The most frequently encountered cause of cyanosis in the first week of life

- Transposition of the Great Arteries
- Flow Pattern
 - Flow is in parallel instead of the normal series
 - Right flow \rightarrow RA to RV to Aorta to systemic
 - Left flow \rightarrow LA to LV to PA to lungs

• Survival

• Communication through ASD, VSD, or PDA


- Transposition of the Great Arteries
- Signs and Symptoms
 - Symptoms are based on anatomy (VSD, pulm. stenosis)
 - Cyanosis
 - CHF
 - Chest Radiograph is egg shaped with narrow stalk

- Transposition of the Great Arteries
- Treatment (temporary vs. permanent)
 - Temporary
 - ${\scriptstyle \circ}$ Prostaglandin E_1 infusion to keep ductus arteriosus patent
 - Balloon atrial septostomy (Rashkind's procedure)
 - Permanent
 - Arterial switch operation

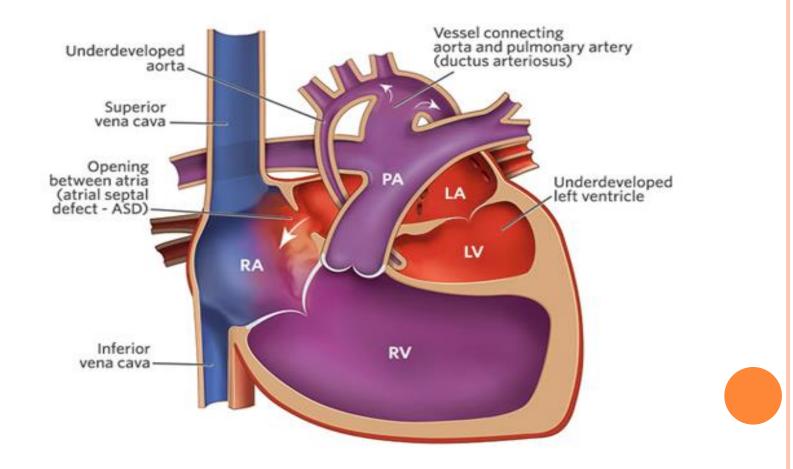
- Transposition of the Great Arteries
- Anesthetic Management
 - Maintain heart rate, contractility, and preload
 - Maintain PGE if ductal-dependent
 - Prudent balance of SVR and PVR
 - High PVR can decrease pulmonary blood flow and reduce mixing
 - Tight blood pressure parameters to avoid pressure on arterial sutures
 - Bleeding is great risk
 - Anticipate requiring platelets and cryoprecipitate
 - May leave chest open
 - Monitor for myocardial ischemia that may be related to the re-implanted coronaries or left ventricle
 - Support left ventricle with inotropes and afterload reduction

• Truncus Arteriosus

• Also classified as an admixture lesion

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

- Truncus Arteriosus
 - Represents 1-4% of all CHD
- Signs and symptoms
 - Unrestrictive left to right shunting (admixture lesion)
 - Pulmonary overcirculation
 - Cyanosis and arterial hypoxemia
 - Failure to thrive
 - CHF
 - Cardiomegaly on chest x-ray


- Truncus Arteriosus
- Treatment
 - Medical management
 - diuretics to control CHF symptoms
 - Surgical Treatment
 - Separation of pulmonary arteries from main truncus
 - Patch closure of VSD (to isolate LV output to truncus)
 - Dacron conduit with valve from RV to PA

• Anesthetic Management

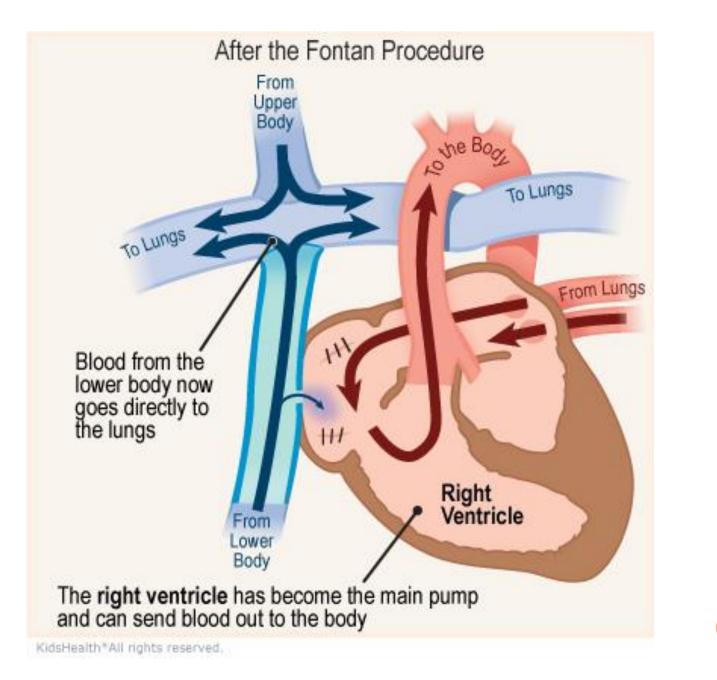
- Maintain heart rate, contractility, and preload
- Minimize pulmonary over circulation by maintaining PVR with positive airway pressure, PEEP, low ${\rm FiO}_2$
 - Phenylephrine and fluids to reverse myocardial ischemia in the setting of "steal" from the systemic circulation
- Inotropic support for CHF

ADMIXTURE LESIONS

• Single Ventricle Lesions (HLHS)

ADMIXTURE LESIONS

• Single Ventricle Lesions


- Double inlet left ventricle (single LV)
- Hypoplastic Left Heart Syndrome (single RV)
- Double outlet right ventricle (single RV)
- Parallel circulation
- Balance between SVR and PVR is critical for survival

ADMIXTURE LESIONS

- Single Ventricle Lesions
- o Treatment
 - Three stage process
- <u>Neonatal</u>: aortic reconstruction, systemicpulmonary shunt, or PA band (Norwood Procedure)
- <u>Age 3-6 months</u>: Superior cavopulmonary connection (Glenn Procedure)
- <u>Age 2-4 years</u>: inferior cavopulmonary connection (Fontan Procedure)

Admixture Lesions

- Single Ventricle Lesions
- Life and physiology after Fontan Procedure
 - Perfusing the lungs relies on passive venous return from SVC and IVC
 - RV becomes main pump for systemic blood flow
 - It is important to keep negative intrathoracic pressure and adequate preload
 - Avoid positive pressure ventilation or hypovolemia

HEART TRANSPLANT

- Pediatric patients account for 13% of all heart transplants
 - Cardiomypoathies, CHD, retransplantations
- Anesthetic Management
 - Patient's underlying defect/repairs should guide management
 - Induce to blunt SNS response to intubation, but prevent myocardial depression and hypotension
 - Etomidate, high fentanyl dosing, low sevoflurane
 - Allow time for drugs to circulate in low ejection fraction state
 - Preparing for termination of cardio-pulmonary bypass
 - Impaired systolic function
 - Right ventricular afterload mismatch
 - SA and AV node dysfunction
 - Reduced diastolic dysfunction

HEART TRANSPLANT

- Non-Cardiac Surgery after Transplant
- Denervated heart
 - Dependent on intact Frank-Starling mechanism
 - Dependent on circulating cathecholamines
 - Increased resting heart rate (loss of vagal tone)
 - Reduced response to exercise and stress
- Altered response to medications
 - No response to atropine, glyco, nor digitalis
 - Possible severe bradycardia with neostigmine
 - Exaggerated response to direct acting sympathetic agents
 - Exaggerated response to calcium channel blockers, beta blockers, and adenosine
 - Reduced response to indirect acting agents including dopamine and ephedrine

SBE PROPHYLAXIS

AHA Recommendations:

- Patients antibiotics are required for
 - If prosthetic valve is in place
 - History of infective endocarditis
 - Unrepaired cyanotic CHD
 - Repaired CHD in last 6 months with prosthetic material
 - Repaired CHD with residual defects
 - Heart transplant recipient with valvuloplasty
- Procedures antibiotics are required for
 - Dental procedures with manipulation of gingival tissue
 - Respiratory tract procedures
 - Procedures on infected skin, skin structures, or musculoskeletal procedures
 - NOT required for GI/GU procedures if no active infection

PEDIATRIC VS ADULT CPB SYSTEMS

Table 6.1 Differences between adult and pediatric cardiopulmonary bypass systems.

	Adult	Pediatric
Estimated blood volume	65 ml kg ⁻¹	<10 kg: 85 ml kg ⁻¹
Dilution effects on blood volume	25-33%	Up to 100-200%
Addition of whole blood or packed red blood cells to prime	Rarely	Usually
Oxygen consumption	$2-3 \mathrm{ml}\mathrm{kg}^{-1}\mathrm{min}^{-1}$	$6-8 \mathrm{ml}\mathrm{kg}^{-1}\mathrm{min}^{-1}$
Full CPB flow at 37 °C	$50-75{\rm mlkg^{-1}min^{-1}}$	$150-200 \mathrm{mlkg^{-1}min^{-1}}$
Minimum CPB temperature	Rarely <30 °C	Commonly <30 °C
Use of total circulatory arrest or regional cerebral perfusion	Rare	Common for some defects; HLHS, Hypoplastic aortic arch
Perfusion pressure	50-80 mmHg	30-50 mmHg
Acid–base management	Primarily alpha-stat	Primarily pH-stat ≤30 °C
Measured PaCO ₂ differences	30-45 mmHg	20-80 mmHg

• Chart taken from Nasr, V. G. & Dinardo, J. A. (2017) pg. 53.

REFERENCES

- Barash, P. G., Cullen, B. F., Stoelting, R. K., Chalan, M. K., Stock, M., C., & Orteha, R. (2013). *Clinical Anesthesia*. Lippincott Williams & Wilkins
- Cote, C. J., Lerman, J., & Anderson, B. J. (2019). A practice of anesthesia for infants and children, sixth edition. Elsevier.
- Cincinnati Children's (2020). *Heartpedia*.
- Frasca, D., Baker, K., Simpson, T., Falyar, C., Strauss, P., (2019). *Apex anesthesia review*. apexanesthesia.com
- Nasr, V. G. & Dinardo, J. A. (2017). *The pediatric cardiac anesthesia handbook*. Wiley Blackwell.
- Sommer, R. J., Hijazi, Z. M., & Rhodes, J. F. (2008). Pathophysiology of congenital heart disease in the adult part 1: shunt lesions. *American Heart Association*. doi: 10.1161/CIRCULATIONAHA.107.714402